
......

21 The Microsoft Windows Guidelines for Accessible Software
Design
can cause your application to behave inconsistently with other software
on the system.

Visual Focus
Many accessibility aids need to identify the "focus point" where the
user is working. For example, a blind-access utility must describe the
text or object that the user is working on, and a screen-magnification
utility pans out to enlarge whatever is at a particular point on the screen.
Other utilities may move pop-up windows, so they do not cover "where
the action is."

Sometimes, it is easy for an accessibility aid to determine this location;
the operating system provides it when it moves the focus between
windows, menus, or standard controls. It is more difficult to determine
the location when an application uses its own method of indicating the
visual focus within its window, such as highlighting a cell in a
spreadsheet, an icon, or a windowless custom control. In these cases, to
be accessible, the application must make its focus location available to
other programs in the system; the convention for doing this is to move
the system caret.

Moving the System Caret
The system caret is the blinking vertical bar that the user sees when
editing text, but it can be placed anywhere on the screen, made any
shape or size, and even made invisible. If it is invisible, it can be moved
to indicate the focus location to applications without disturbing what the
user sees on the screen.

Making the system caret invisible is easy: simply call the CreateCaret
function to set the caret's size and shape and the SetCaretPos function
to move it to wherever you are drawing the visual focus indicator (the
highlighted cell, icon, button, and so on). Note that it is present but
invisible, unless you explicitly make it visible.

An application should only display focus and selection indicators when
they are in the active window. When the window loses activation, the
application should remove the visual indicator and also call the

The Microsoft Windows Guidelines for Accessible Software Design
22
DestroyCaret function to inform other applications. (For Win32
applications, this step is not strictly necessary, but is still good practice.)

Determining the Keyboard Focus
Sometimes, it is hard to decide what to indicate as the focus location.
Extended and discontiguous selection often confuse the issue, but the
keyboard focus location should be considered independent of selection,
even if an application normally links the two.

The following examples may clarify the distinction and help you learn
to identify and indicate the keyboard focus location in your own
application:

u Insertion bars in text. When the user moves an insertion point
within text, it is usually drawn with the real system caret. If the
application chooses to draw its own insertion point, it should still
move the system caret invisibly, tracking the location of the visible
insertion bar.

u Extended text selection. When the user makes an extended
selection, one end of the selection is always the "active" or moving
end, and that is the actual location of the keyboard focus. For
example, to select three characters, you start with the insertion bar in
an edit control, and then hold down the SHIFf key while pressing the
right arrow twice. The end where you started is the "anchor," the
stationary end; at the right, you should see the flashing caret marking
the active end. If you hold down the SHIFf key and press another
arrow key, it is the active end that moves, and that is where the
system caret should be placed. You should display a visible insertion
bar at the active end, because that is useful feedback for all users.

u On graphic objects. When a user moves the keyboard focus to a
graphic object, such as an icon or a bitmap, an application should
place the system caret invisibly over the same object so that the
caret's rectangle covers the entire image. If there is an adjacent label,
the caret should cover that as well.

u Within graphic objects. Sometimes, an application uses a single
bitmap to represent several objects, such as a group of graphical
buttons. The application usually indicates the focus by highlighting a
portion of the bitmap, drawing a dotted rectangle over it, or even

23 The Microsoft Windows Guidelines for Accessible Software
Design

moving the mouse pointer. In addition to indicating the focus, the
application should also place the system caret invisibly over the
region of the bitmap that corresponds with the "hot spot" or object
being referenced.

u Simple controls. If an application is drawing simple custom
controls, such as a custom push button, the keyboard focus is
associated with the entire control, so the entire control should be
covered by the system caret. (This is necessary only for windowless
custom controls. If the control is a window, the window takes the
keyboard focus, so it is not necessary to identify it using the system
caret.)

u Complex controls. A complex or composite control, such as a list
box, can place the focus on individual elements within the larger
control. In this case, an application should use the system caret to
indicate the area of the particular item that has the focus. Even
though the application might think of the collection of items as a
single control, they should be treated as separate control elements
when they are identified to external components.

u Spreadsheets. When the user navigates within a spreadsheet, the
focus is usually placed on an entire cell, rather than on content within
the cell. Often, this is indicated by a bold cell border, and the
application should place the system caret over the entire cell. If the
user begins editing the contents of a cell, the application should
indicate the focus appropriately for the content text or graphics.

u Discontiguous selection. Discontiguous selection is usually
supported among discrete items, rather than in text. There is always
one item that has the keyboard focus or was most recently clicked by
the mouse, and that object should be covered by the system caret. To
see an example, select an item in a folder or in File Manager, and
then hold down the CTRL key while pressing arrow keys to move the
focus rectangle to a file that is not part of the selection.

u Mouse-only objects. Although applications should provide keyboard
access to all their functionality, some objects can only be
manipulated or selected using the mouse. In this case, you should
treat the object when it is selected as if it received the keyboard focus
and use the system caret appropriately to indicate that it has the
focus. Of course, if the real keyboard focus moves, you should

The Microsoft Windows Guidelines for Accessible Software Design
24

follow it, because the mouse-only object is no longer the object of
the user's attention.

Controls and Menus
A sighted user can usually identify a control, such as a push button or
check box, by its appearance, but a user who is blind has to rely on a
screen review utility to describe the object in words. The utility presents
the user with the name, type, and state of the control. For example, after
the user has tabbed to a check box, the utility might say "Quick Printing
check box, checked." Obviously, it can only do this ifit can determine
all the properties from the application. Voice input utilities and on­
screen keyboards have similar requirements; they need to identify and
name specific controls and to determine how to manipulate the control
in response to the user' s co~mands. In some cases, the use of
nonstandard controls can render an application completely unusable for
users who rely on accessibility aids.

Controls can be divided into these categories, each of which will be
discussed in the following sections:

u Standard Windows controls (including Windows common controls).

u Owner-drawn controls, which behave like standard controls, but have
a customized appearance.

u Superclassed standard controls, which add customized behavior to a
standard Windows control.

u Custom controls, which are implemented by an application without
using the normal Windows mechanisms.

u OLE Controls, which are custom controls designed to a standard
programming interface.

u Owner-drawn menus.

Standard Windows Controls
Standard Windows controls should be used whenever possible, because
they are the most compatible with accessibility aids.

Each standard Windows control is a separate window of a specific class,
so the accessibility aid can get notified when the focus moves to a new

i
....J

....
25 The Microsoft Windows Guidelines for Accessible Software
Design
control. The aid can determine the control's window class, and that tells
the aid what additional messages it can send to the control to query or
alter the state. The aid can also identify all of the child controls
contained within a parent window and identify the parent of any control.

The Windows 95 common controls library provides standardized
implementations of many controls that are not supported by Windows
itself, and these are all designed to be compatible with accessibility aids.
Many, such as the list view and tree view controls, are extremely
flexible and can be used to replace a variety of custom and owner-drawn
controls.

Owner-Drawn Controls
Owner-drawn controls can be accessible as long as care is taken in their
use. Although owner-drawn controls behave like standard controls, they
have a customized appearance. Some applications use custom controls
to change the appearance of a control, but owner-drawn controls are
also an acceptable, and more accessible, option. For example, an
application using an owner-drawn control might display a check box
with an actual check mark instead of an X or label a push button with a
picture instead of a word. Using a standard Windows control with the
owner-drawn style makes the control appear normal to accessibility
aids, but still allows the application to give control elements a
customized appearance.

You should define the label for an owner-drawn control, even if the
label text will not be visible on the screen. If you create an owner-drawn
control in which the normal caption will not be visible (for example, a
button with a graphic face) and leave the caption as a blank string, the
accessibility aid will not be able to query the caption with a
WM_GETTEXT message and use it to identify the control. You should
make sure that your owner-drawn control handles all the other class­
specific text retrieval messages, such as CB_GETKBTEXT,
LB_GETTEXT, and so on, and set the appropriate style bits (such as
LBS_HASSTRINGS) to indicate that the owner-drawn control supports
those messages.

Superclassed Standard Controls

The Microsoft Windows Guidelines for Accessible Software Design
26
Some applications that use standard controls alter their behavior by
employing a technique known as superclassing. When an application
uses superclassed standard controls, basic control functions are still
handled by the underlying system code for the standard control type, but
the application adds its own special behavior. You should follow these
guidelines when using superclassed standard controls:

u Make sure that the superclassed controls respond to the normal
messages for their class.

u Use recognizable class names. Because superclassed controls
normally have a unique class name, you should make sure the
control's class name identifies the base class by including the normal
class name as part of its name. For example, a superclassed button
could be given a class name like "MyAppButton." Any accessibility
aid encountering this name would assume that the control is a
superclassed button.

u Do not include the name of an unrelated standard class in a
superclassed control's class name because an accessibility aid might
mistakenly assume that the control is related to the standard class.

Custom Controls
You should generally avoid using nonstandard custom controls, because
they are not fully usable with screen review or voice recognition
utilities. Custom controls present a number of problems, because
accessibility aids cannot identify the type of the control or its state. In
addition, if the control does not have its own window, accessibility aids
are not able to watch it receiving and losing focus.

At this time, there is no standard way for applications using nonstandard
controls to work well with accessibility aids. However~ you can use
these techniques as short-term solutions:

u If the custom control has its own window, you can return a
descriptive string when the control is queried using the
WM_GETTEXT message. For example, a control that appears as a
button with the label Print could return the string "Print button" to
convey both the control type and the label. The same string would be
appropriate if the control looked like a button, but had a graphic
showing a printer rather than a textual label. Likewise, a custom

....

27 The Microsoft Windows Guidelines for Accessible Software
Design

control that behaves like a check box could return a caption string
"Printing Enabled check box, checked."

u If the custom control has no window, you can associate a descriptive
string with the control by using the techniques described in "Use of
Bitmapped Text" later in this document. This string can follow the
same conventions described in the previous paragraph.

u If the custom control has no window, you can convey the focus
location to accessibility aids by moving the system caret as described
previously in "Visual Focus."

u When using custom controls that have their own window, you should
support the WM_GETDLGCODE message, which identifies the
keyboard input that is supported and also the equivalent standard
control if there is one. The one form of custom control that is
regarded as accessible is OLE controls. For more information, see the
following section.

OLE Controls
The preferred method for creating custom controls is to use the OLE
controls architecture. OLE controls are an extension of the model used
by the Microsoft Visual Basic programming system. Each control is an
OLE object with many standardized properties and methods. Future
OLE interfaces will support a method of obtaining interface pointers
(object handles) to each object in a window or region of a window by
querying with a window message. Once you have an interface pointer,
you can make calls to an object to retrieve or set properties, induding
the object's location, name, and primary value.

An application that hosts OLE controls should support the
IOLEContainer interface, which allows the enumeration of embedded
controls and other objects.

Owner-Drawn Menus
You should always provide an alternative to owner-drawn menus,
especially if they have a purely graphical appearance.

Owner-drawn menus are a flexible means of presenting a customized
appearance, by making a menu item a combination of graphics and text,

The Microsoft Windows Guidelines for Accessible Software Design
28
or graphics alone. For example, a menu might allow the user to select·
from a series of colored rectangles or select a line thickness from
examples, which are easier to understand than purely textual
representations (such as 3 points, 4 points, and so on).

However, owner-drawn menus are incompatible with most types of
accessibility aids that need to identify the names of each menu item.
Therefore, you should provide an option that replaces graphics menus
with standard, textual menus when an accessibility aid is being used.
The following techniques can be used as short-term solutions:

u Menu items can be redesigned to include both graphics and text. For
example, a menu item for selecting line width might display a sample
of a line followed by text stating the width. This redundancy would
also be useful for a sighted person doing layout based on a written
standard, which requires lines to have a particular thickness.

u The user can be given a choice of graphics or text. If he or she
chooses text, the application can revert to standard rather than owner­
drawn menus. This is a good use for the Screen Reader Present flag,
a global flag that tells all applications when the user is relying on a
screen review utility. When that flag is set, the application can use
the textual values instead of (or in addition to) the graphical
presentation.

The following illustration contrasts the use of an owner-drawn menu
using text and graphics with the use of a standard menu using only text.

29 The Microsoft Windows Guidelines for Accessible Software
Design
Using Appropriate Controls for Displaying Information ­
Windows provides the following controls for displaying information to
the user: static controls, read-write edit controls, read-only edit controls,
and status controls

Making the proper choice of control can improve the keyboard access to
your application as well as its compatibility with accessibility aids. To
choose a control that is appropriate for the user's interaction with the
information, follow these guidelines:

u Use static controls for labels. In the illustration that follows, the
words "Server:," "Comment," and "Current Users:" identify
accompanying controls and are displayed as static controls.

u Use read-write edit controls for values that the user can edit directly.
In the illustration that follows, the server name is an edit control that
starts with a default value, which the user can freely change. Read­
write edit controls should always have visible borders.

u Use read-only edit controls for values that the user cannot edit. In the
illustration that follows, the comment about the server is represented
by a read-only edit control, which allows the user to select the text
and copy it to the clipboard or to drag it to another document. This
control is also included in the tab order so that a user can navigate to
it using the keyboard. (Note that the label for read-only edit controls
is· not required to have underlined access keys.)

u Use status controls from the common controls library to display
values that may change dynamically as the user watches. In the
illustration that follows, the number of current users can change. In
addition to being consistent with other applications, these controls
provide information to screen review utilities, which may notify the
user when values change.

The following illustration shows the static, read-only edit, write-only
edit, and status controls described in the preceding list.

The Microsoft Windows Guidelines for Accessible Software Design
30

Drawing Operations
The type of drawing operation used can affect compatibility with screen
review utilities. Screen review utilities watch calls to drawing functions
and remember what text and graphics have been drawn and where. They
also check textual attributes, such as font, size, fonnatting, and so on. In
addition, they watch infonnation being copied from one location to
another and being erased or overwritten by other text or graphics. These
utilities rely on being able to monitor nonnal Windows drawing
operations.

Drawing Using the Standard Windows Functions
An application should always draw text using the standard Windows
function calls, such as ExtTextOut, so the drawing can be seen by
screen review utilities. This is true whether drawing is to a screen or to
an off-screen bitmap. By watching every function call that creates a
bitmap, draws to it, or copies from it, text can be tracked until it is
displayed to the user.

Two techniques, the use of bitmapped text and the direct manipulation
of pixels or bitmap bits, bypass the nonnal system calls and prevent a
screen review utility from working. These techniques are discussed in
the sections that follow.

Use of bitmapped text
Some applications ship precreated bitmaps either as resources or in
separate files shipped with the application. A screen review utility can
watch these bitmapped images being loaded, manipulated, and copied to
the screen, but it has no way of deciphering the contents of the bitmap.

31 The Microsoft Windows Guidelines for Accessible Software
Design
If the bitmap contains text, the text will be visible to the sighted user.
The utility, however, will not be able to present the text to the user who
is blind. These bitmaps are called "bitmapped text." Because the text
starts out as part of the bitmap, it is never available to the system.

An application should draw text using the standard Windows functions.
There may still be cases, however, where it is necessary to display text
as a hand-tuned bitmap (an example would be a corporate logo). There
are two simple methods that the application can use to inform the screen
review utility about the text associated with the bitmap. The first
method is to use a tooltip control to associate the label with the area of
the screen where the bitmap is drawn. The second method is to draw the
text over the bitmap. The application can easily carry the text along with
the bitmap, most likely as entry in its string table resource. When the
bitmap is loaded from disk by using the LoadBitmap function, the
application can also load the text by using the LoadText function. It can
then inform the screen review utility of the relationship between the
two.

To perform a drawing operation, create a temporary screen-compatible
bitmap and an associated memory device context (DC). Draw the text
into the bitmap by using the ExtTextOut function, and then use the
BitBlt or StretchBlt function to copy the bitmap onto the destination
location, specifying the NOP raster operation. The destination can be
either the screen or another off-screen bitmap. It is easiest to do this
operation when the bitmap is first loaded into memory. The accessibility
aid tracks the information subsequently.

It is only necessary to perform extra operations when a screen review
utility is running. To determine whether one is running, call the
SystemParameterslnfo function with the SPI_GETSCREENREADER
value.

Direct manipulation of pixels or bitmap bits
An application.should use standard Windows functions, such as BitBlt,
PatBlt, and StretchBlt, for erasing text and other graphic objects and
for erasing or copying bitmap memory. If an application must use
alternative means, you should provide an option for reverting to
standard behavior.

The Microsoft Windows Guidelines for Accessible Software Design
32
Some applications directly manipulate the memory associated with a
DC, bypassing the Windows functions altogether. This is most
commonly done with monochrome or device-independent bitmaps.
When Windows functions are not used, however, the screen review
utility is not aware of the changes taking place. For example, if an
application draws text into a bitmap using a Windows function call and
then later erases it by clearing the bitmap memory, the screen review
utility will assume that the text is still present. If the bitmap is used
again for another operation, the text might be read to the user, even
though it is no longer visible. Similarly, if the bits comprising one
bitmap are copied directly into another without using the Windows
functions, the screen review utility will not be aware of it, and text
displayed visually might be unseen by the screen review utility.

The Windows application programming interface (API) provides
several means of manipulating bitmap or display pixels directly, such as
DirectDraw, Display Control Interface (DCI), WinG, and the
CreateDIBSection function. These techniques bypass screen review
utilities. If your application relies on these techniques for performance,
you also support using more conventional methods when a screen
review utility is running on the system. To determine whether one is
running, call the SystemParameterslnfo function with the
SPI GETSCREENREADER value.

Identifying Separate Screen Areas
Anything that is drawn using a single operation appears to a screen
review utility as a single object. For that reason, a bitmap appears as one
object, even though it might look like several distinct objects to the
sighted user. An example is a custom control that looks like an array of
buttons, but is really a single bitmapped image. A screen review utility
describes the entire array as a single object, so the user has no way to
manipulate the individual buttons.

In such cases, the application should use a tooltip control to identify
each separate region. The tooltip control is one of the Windows
common controls introduced in Windows 95. It identifies a region by
displaying the textual label associated with it. It provides this

..

33 The Microsoft Windows Guidelines for Accessible Software
Design
information to the sighted user in a way that is consistent with the rest
of the Windows interface.

If, for some reason, you cannot use tooltip controls, you can use the
following two techniques to identify regions of the screen. However,
both are less functional and less standardized than the tooltip approach:

u An application can draw each component object as a separate bitmap.
Normally, this will not impact performance, memory, or disk space.
Objects can be drawn to an off-screen bitmap and then copied to the
screen in a single operation.

u An application can keep an array as a single bitmap, but identify the
separate regions for a screen review utility using a tooltip control.

u An application can keep an array as a single bitmap, but identify the
separate regions for a screen review utility by drawing shapes over
the bitmap invisibly using a NOP raster operation. This technique is
described in "Use of Bitmapped Text."

It is only necessary to perform these extra operations when screen
review software is running. To determine whether one is running, call
the SystemParameterslnfo function with the
SPI GETSCREENREADER value.

Identification of Windows
Windows need to be identified for the user and for accessibility aids so
that the function of windows can be determined.

Identifying Windows for the User
You should try to assign a user-friendly caption to every window,
whether or not it is visible on the screen.

Every window can have a caption, whether or not it has a visible caption
bar. Screen review utilities query this text by sending a .
WM_GETTEXT message and use it to identify the window to a user
who is blind when the window receives focus or when the user issues a
"What window am I working in?" query. Similarly, voice recognition
and on-screen keyboard utilities use the caption as a command that the
user can choose. However, for this to work, the application developer

The Microsoft Windows Guidelines for Accessible Software Design
34
has to provide appropriate text when the window is created or by calling
the SetWindowText function.

Note that the need for captions applies to all windows-not only top­
level windows but also to child windows, such as floating palettes,
custom controls, and toolbars-and to panes within the same window
frame when they are implemented as separate windows.

Identifying Windows for Accessibility Aids
You should try to give different types of windows separate, unique
window classes so that accessibility aids can identify their function.

Accessibility aids sometimes need to specialize their handling of
different windows within the same application. For example, an
application that has both a word-processing window and a spreadsheet
window might draw the visual focus indicator in very different ways.
Screen review utilities may also have separate instructions for handling
these windows, such as identifying areas of the window that should
automatically be read to the user whenever they change. Voice input
and on-screen utilities also allow the user to choose between names to
move focus to the window.

While a human being can identify a window by its title, this is not a
reliable mechanism for accessibility aids, because many window titles
change dynamically with the document or the status, or are localized
into different languages. The window class name does not change under
either circumstance.

Timing and Triggering Events
In some cases, people with disabilities may have difficulty accessing
information because of the time and duration that information is
displayed. In general, you should allow users to customize timings and
avoid triggering events that could cause unexpected results. The
following sections describe basic problems related to timing and
triggering of events.

Adjusting General User Interface Timings

b H

35 The Microsoft Windows Guidelines for Accessible Software
Design
Any timed behavior should be adjustable by the user. Some individuals
have slower than average reaction times, and it can be difficult for them
to use features that rely on fixed timings. Examples of this include the
autoscrolling that takes place when the user drags towards the edge of a
window or holds down the mouse button over a scroll bar. In some
cases, you should allow the user to tum off timed behavior altogether.
An example of this would be any event that happens automatically
when the mouse or keyboard focus pauses over on an object for specific
amount of time.

Message Time-outs
You should avoid having messages time out. However, if you must use
time-outs, you should provide an option to disable them in your
application.

There are many reasons why a user may not spot a warning that is only
displayed for a brief period of time. For example, the user might be
using a screen enlarger and may have to reposition the viewport or
adjust other attributes to read the text correctly. He or she may take a
longer time than normal to type in an answer or take a longer than
average time to read and understand the message. The user might even
step away from the desk for a moment.

If a message is really important, the best way to make sure it is seen it to
display it until the user consciously dismisses it. Even if a message is
unimportant, it is disconcerting to have the message disappear before it
can be read. If the user does not have time to fully read a message, how
can he or she determine whether it is unimportant?

Flashing
You should flash objects and text on the screen only at the caret blink
rate. Flashing at certain rates can cause epileptic seizures, but people
susceptible to such seizures can adjust the caret blink rate through
Control Panel to a rate that is harmless for them. By flashing objects
and text only at the rate that the user has specified, an application can
prevent causing such seizures.

The Microsoft Windows Guidelines for Accessible Software Design
36
Triggering of Events by Mouse Pointer Location
You should avoid having events triggered by movements of the mouse
pointer over or off a special area. If you must include triggering, you
should make it optional.

Some accessibility aids require the mouse pointer to move when
information is explored on the screen. For example, a screen review
utility may move the mouse to follow words being read, or a user may
need to move the mouse to enlarge certain text.

Reliance on a mouse pointer can be a problem if movement of the
mouse causes unexpected results. For example, if text appears when the
mouse moves over an object and disappears when the mouse moves off
of it, the text essentially disappears each time the user tries to read it!

There are two cases where it is acceptable to trigger changes based on
mouse pointer movement, because these cases are already understood
by accessibility aids and handled appropriately:

u It is acceptable to change the shape of the mouse pointer as it is
moved. For example, you can change the shape to indicate whether
or not an object is a valid drop target.

u It is acceptable, and in fact encouraged, to use tooltip controls to
display an object's name or other explanatory information when the
pointer is paused over an object. However, this is only the case if a
standard tooltip control is used rather than a custom implementation.

Triggering of Events by Keyboard Focus Location
You should avoid having events triggered by movements of the
keyboard focus. However, if you must include triggering, you should
make it optional.

To enable the user to "read" or explore a window's contents, you should
support keyboard mechanisms that allow the focus to change to a
control or area without causing problems. For example, it is typical for a
user who is blind to use the TAB key to move through all the controls in
a dialog box as a means ofexploring it before he or she goes back and
does any actual work.

tt

37 The Microsoft Windows Guidelines for Accessible Software
Design
There are exceptions to this rule, primarily in cases where application
behavior has been standardized and mechanisms exist for accessibility
aids to work appropriately:

u It is acceptable to display explanatory text that gives details about the
function of a menu while menu messages are being processed. It is
preferable to draw this text in a status bar to be consistent with other
applications, but any text drawn during menu processing will be
assumed to serve this function.

u It is acceptable to automatically change the value of option controls
(radio buttons) and tab controls during keyboard navigation.
Although this behavior can cause problems for keyboard users, it is
necessary for backwards compatibility.

u An application that takes some action when the focus moves should
provide an alternative way to move the focus. This is typically done
by using the CTRL key to modify the navigation key. For example, in
Windows Explorer or in a list box that supports discontiguous
selection, the user can move the focus and change the selection when
navigating with an arrow key. However, the user can move the focus
without changing the selection by holding down the CTRL key when
he or she presses the arrow key.

Color
The use of color can greatly enhance a user interface, but only if it is
used appropriately. In general, your application should not convey
information by color alone, because some people will not be able to see
it. Color should only be used to enhance, emphasize, or reiterate
information shown by other means. If your application must convey
information through color, you should make sure it is also available
through some another means.

Customizing Color
For many people, color is a matter of preference. They may use Control
Panel to choose a personal color scheme that they enjoy, but they do not
mind and probably do not even notice if an application always draws its
elements in a fixed color.

The Microsoft Windows Guidelines for Accessible Software Design
38
However, for many users with visual impairments, color is critical.
Many people require a reasonably high contrast between text and the
background to be able to read. They may even need a particular scheme,
such as white text on a black background, to prevent the background
from "bleeding" over and obscuring the foreground text. Some people
consider the default color scheme quite legible, but find that it causes
eyestrain over longer periods of time. Still others, nearly 10% ofmales
and 1% of females, have some form of color blindness that makes
certain color combinations unreadable.

Conveying Information by Color Alone
Ifyour application conveys information by color alone, some users will
not be able to make use of the information. Even allowing the user to
customize the colors is insufficient if the user can only read white text
on a black background or if the user is using a hand-held computer with
a monochrome display. For these situations, the application should also
make the information available through a means other than color.

Using Standard System Colors Where Appropriate
When possible, an application should use the standard system colors
that the user has selected through Control Panel. This is easiest to
accomplish when an element in the application's window corresponds
to a usage handled by Control Panel, such as window text, button face,
dialog box text, and so on. By using the color combinations that the user
has explicitly chosen, you reduce the chance that your choice of colors
will make your application unusable, and you ensure that your
application's colors are pleasing to the user without having to provide a
user interface for adjusting colors. For a complete list of system colors,
see the description of the GetSysColors function in the Microsoft
Win32 Software Development Kit (SDK).

Your use of the color and the use selected in Control Panel do not need
to correspond exactly. For example, the user's choice ofwindow text
color and background is probably a safe combination to use for any
purpose.

•

39 The Microsoft Windows Guidelines for Accessible Software
Design
Using Colors in Proper Combination
Your application should always use system colors in their proper
foreground-background combinations to ensure that they have
reasonable contrast. The user will never choose a button text color that
is the same as the button face color, so these will always be legible
when used together. However, the user may alter the color scheme so
that system colors that normally contrast, such as button text and
window background, might be the same color on their systems. Ifyour
application draws using colors that are not specifically designed to be
used in combination, the information may be completely invisible.

Your application should always draw foreground objects in foreground
colors and fill backgrounds with background colors. Many users require
specific high-contrast combinations, such as white text on a black
background, and drawing these reversed, as black text on a white
background, causes the background to "bleed" over the foreground.
This combination can make reading difficult, or even painful, for some
users.

The following list shows some combinations that are safe to use and
others that are not.

Status

Safe combinations

Unsafe mixing combinations

Unsafe reversed foreground and
background

Type of combination

Window text on window background

Button text on button face

Window text on button face

Button text on window background

Window background on window text

Button face on button text

Making Custom Colors Customizable
If you use colors for elements that do not correspond to system colors
selected in Control Panel, you should provide your own means for
adjusting the colors. For example, you could design a calendar
application that uses different background colors to indicate various
types of events. When using application-specific colors in this way, you

The Microsoft Windows Guidelines for Accessible Software Design
40
should allow the user to assign his or her own choice of colors for the
elements.

Historically, some applications have had fixed colors to prevent the user
from selecting an "ugly" color scheme that would make the application
look unattractive. However, a user will not complain about a color
scheme that he or she chooses, but may be displeased by a fixed color
scheme.

Another option is to provide patterns as an alternative to colors. In the
case of the calendar application, users could be allowed to choose a
pattern along with the color for each type of scheduled event. They
could choose a color combination that works for their eyes and supply
any additional information as a background pattern. This option works
best when the pattern fills an object without interfering with the text.

Coloring Graphic Objects
Graphical objects present special challenges. For example, some
application display buttons that have pictures on them instead of, or in
addition to, text. Do the colors selected in Control Panel apply to this
case?

If the picture on the button is monochrome, the answer is simple. The
button face should always be drawn in the standard system color (the
COLOR_BTNFACE or COLOR_3DFACE button value), and the
foreground image should be drawn in the standard button text color (the
COLOR_BTNTEXT button value). If the image is drawn inside a
window rather than on a button, it is more appropriate to use the
COLOR WINDOW and COLOR WINDOWTEXT values instead of- -
the button colors.

A multicolored picture presents more problems. The easiest solution is
to include a monochrome image that can be used on monochrome
displays or that can be used when the user has chosen a nondefault
button face color or has requested High Contrast Mode (described later
in this document).

If you cannot include monochrome images, you can try creating them
on the fly from the multicolored images by identifying light and dark
areas as foreground and background. For example, a bitmap that has a

41 The Microsoft Windows Guidelines for Accessible Software
Design
multicolored object on a white background could be mapped with all
colors other than white in the appropriate system foreground color and
with white in the system background color. These colors could be
reversed for images designed with a dark background.

Preventing Backgrounds from Obscuring Text
Text drawn over a varied background, such as a wash of colors or a
bitmap, may be illegible for some viewers, so you should always
provide the user with the option to omit the image and revert to a plain
background. Text is most legible when drawn against a plain
background of a contrasting color, and many users with low vision will
not be able to read text if the background is irregular.

Instead of providing an option to control contrast in your application,
you can simply omit the background in response to the High Contrast
Mode setting, which is discussed in the following section. You should
also omit the background if the foreground color changes. For example,
text drawn over a very light bitmap image might appear quite legible in
the default color scheme, but be unreadable if the user chooses a light
foreground text color.

You can keep a complex background reasonably legible by making sure
that the background image contrasts well with the text. If the foreground
text is black, many users will find it hard to read if it is drawn over areas
of the image that are brown or other dark colors.

High Contrast Mode
An application that uses standard system colors or allows the user to
choose colors that are not defined by the system has its basic color­
related needs covered. However, Windows 95 introduces a new feature
called High Contrast Mode, which the user can activate through Control
Panel to advise applications to provide high contrast visuals.
Applications can check for this setting by calling the
SystemParametersInfo function with the SPI_GETHIGHCONTRAST
value. Applications should query this value during initialization and
when processing WM_COLORCHANGE messages.

The Microsoft Windows Guidelines for Accessible Software Design
42
When the High Contrast Mode flag is set, an application can take
additional steps to make its display friendly for users who require high
contrast. You should use these techniques when the High Contrast
Mode flag is set:

u Omit bitmapped images or other complex backgrounds behind text
and controls.

u Draw images in monochrome instead of multiple colors, and draw
them using standard foreground and background colors.

u Replace application-specific colors with standard system colors
defined through Control Panel, and try to use as few color
combinations as possible.

Size
Many people like to fit a maximum amount of information onto a single
screen. However, there are also many who find small type difficult, or
even painful, to read. Users with severe visual impairments will
probably choose accessibility aids, such as a screen enlarger, that can
zoom in on a portion of the screen. A much larger number of users may
have no trouble reading 12 point text on the computer screen, but find it
difficult to read text in smaller sizes. Other users may not have trouble
reading text, but suffer from headaches and eyestrain at the end of a day.
These users do not view small type as a problem of accessibility; they
view it as one of usability.

Although an application might work fine for a user on one computer, it
may be unusable on another computer. Applications that are designed to
look good at standard resolution may have their information shrink to
near invisibility when run on a high resolution monitor, or information
may appear inaccessibly off the screen when run on a small, pen-based
computer.

Selectable Font Sizes
The best way to satisfy users who prefer small type and those who
require larger type is to allow them to choose the typeface and size that
best fit their needs. This simple feature can make applications seem
more user-friendly.

43 The Microsoft Windows Guidelines for Accessible Software
Design
The preferred approach is to provide a menu option or property sheet
where the user can choose the font using the standard Font Selection
dialog box. A second approach is to automatically resize the fonts when
the user resizes the window, but this approach is less flexible because
the user cannot use a large font in a small window with scroll bars.

The following example illustrates selectable font sizes. The FaxFire
application is used to drive a fax card connected to a user's computer. It
has a window that shows a list of all the faxes that the user has sent or
received during the last month with each line showing information for a
single fax: its date, destination, and so on. The line has a maximum
length of 50 characters, and because it is always drawn in a 10 point
font, the window is a fixed size. However, some users have complained
about the fixed font size. How can the font size be fixed?

With a minimal amount of work, a Font command can be added to one
of the menus that enables the user to choose a font using the standard
Font Selection dialog box provided in the Windows common dialog box
library. When the application draws its text, it uses the font that the user
has requested. In case the font selection makes some of the information
extend beyond the edge of the window, the window can be changed to
be resizable and be given scroll bars. The total amount of work required
to fix the font sizing problem is quite reasonable.

Providing Alternatives to WYSIWYG
Some applications try to present a WYSIWYG ("what you see is what
you get") view of a document, making the text on the screen reflect the
appearance that the text will have on the printed page. However, some
people may want to print text in a tiny font, but not edit it when it is that
small. In reality, the size of type on screen need not be linked to the size
that the text will be when printed. It is easy to allow the user to adjust
the size of information on the screen through several methods, such as
draft and zoom modes, which are described in the following sections.

Draft mode
One method for allowing the user to bypass WYSIWYG is to provide a
draft mode, which uses a single font for all information. This mode
customarily uses a single type of annotation, such as underlining, to

The Microsoft Windows Guidelines for Accessible Software Design
44
indicate characters that would normally be drawn with any form of
additional formatting, such as bold or italics. (Draft mode also provides
an added benefit for users running on extremely slow systems or with
little free memory, because it typically performs better in those
situations.)

Ideally, you should allow the user to choose the draft font. Using the
system font may be the best way to conserve memory, but it might not
be the best for the user's vision.

Zoom features
An extremely valuable feature that applications can support is a "zoom"
facility, which scales everything in the document to a user-selected
ratio. Many applications, such as Microsoft Word and Microsoft@ Excel,
offer this feature, and it is beneficial to many users who do not consider
themselves to have disabilities as well as those who do. Use of the
TrueType@ scalable font technology ensures that characters will remain
clearly defined at almost any size.

Scaling Nondocument Regions
Most applications display information in more forms than just text.
Buttons, rulers, and graphic images can also pose problems for people if
the object is a fixed size (especially a small size).

Many application windows contain two types of information: an image
of a document created by the user and one or more panes belonging to
the application itself. A good example of nondocument panes is a word
processor's toolbar of command buttons. If the Zoom command applies
only to the document and not to the surrounding information, the user
may still find it difficult to use the application or suffer from "tiny
button syndrome." The application could have a single zoom factor
applied to both types of information. However, the size of buttons
should not change when 8 point text is zoomed because much of the
benefit of a toolbar is lost if the user has to scroll to reach some of the
buttons.

A better solution is to allow the user to independently select the zoom
ratio for each pane, whether a document or nondocument region. For

45 The Microsoft Windows Guidelines for Accessible Software
Design
example, "Toolbar Size" can be provided as a separate option, and a
single setting can apply to all toolbars. It is also acceptable to provide a
simple option that permits the user to choose from a range of sizes
instead of using a more general scaling factor.

Compatibility with System Screen Metrics
It is important that applications drawing their own screen elements pick
up the size settings that the user has selected in Control Panel. For
example, a private dialog box manager that draws custom dialog boxes
should use the dialog box font that the user has selected for the rest of
the system. The same principle applies for scroll bars, custom menus,
and so on. For a complete list of size settings, see the description of the
GetSystemMetrics function in the Win32 SDK.

Line Width
Although many applications draw lines with a fixed width ofone pixel,
those lines disappear on high-resolution monitors. They may also be
invisible to a person with low vision. Instead of using fixed widths,
applications should determine the proper thickness of a line by calling
the GetSystemMetrics function with the SM_CXBORDER and
SM_CYBORDER values. These values are defined appropriately for
the resolution of the monitor, and in future operating systems the user
will also be able to adjust them appropriately for their vision.

Global Scaling
Windows 95 provides a Custom Font Size feature-that is, the ability to
globally scale all fonts and most other visual elements on the screen by
changing the number of pixels used to represent a "logical inch." To be
compatible with this feature, applications should avoid drawing in
MM_TEXT mode, which bypasses logical scaling. If an element of the
application's user interface uses MM_TEXT while the rest does not,
that one element will be drawn out of proportion to all the rest of the
screen elements.

It is important to note that bitmaps are not automatically scaled by this
factor. Bitmaps are discussed further in the next section.

